
".DT. A2E5 429
illii ,1!ii1/11 1111

DLA-92-P20041

OPTIMAL SAMPLING PLANS FOR ITEMS

REPRESENTING TWO POPULATION GROUPS

April 1992

OPERATIONS RESEARCH AND ECONOMIC ANALYSIS OFFICE

o ,

DEPARTMENT OF DEFENSE

DEFENSE LOGISTICS AGENCY

93-00600

DLA-92-P20041

OPTIMAL SAMPLING PLANS FOR ITEMS

REPRESENTING TWO POPULATION GROUPS

April 1992

Randal S. Wende!l

DEPARTMENT OF DEFENSE

DEFENSE LOGISTICS AGENCY
OPERATIONS RESEARCH AND ECONOMIC ANALYSIS OFFICE

CAMERON STATION
ALEXANDRIA, VA 22304-6100

EXECUTIVE SYNOPSIS

The DLA Laboratory Testing Program has many objectives. The
primary purpose of the random part of the program is to provide a
consistent and reliable measure of the quality of DLA managed
items. A secondary objective is to deter contractors from
providing nonconforming material since any contract may be
subjected to random testing. In an earlier study, the DLA
Operations Research and Economic Analysis Office (DORO) developed
the Sampling Assistance Model (SAM). SAM determines an
appropriate sample size calculation and randomly selects items as
candidates for testing. Based on population characteristics,
confidence levels and precision levels, the sample provides valid
estimates for nonconforming rates aggregated at the Defense
Supply Center level. If all Centers use SAM, these estimates can
be combined and reported at the DLA level.

With a fairly small sample (around 100 items), SAM can
assess the overall conformance and track changes in quality at
the Center level. However, data from such small samples cannot
pinpoint subsets of the Centers' items that may be above or below
Center goals with reasonable precis-ion or confidence. DLA
Directorate of Quality Assurance (DLA/DCMC-Q) desired a more
in-depth sampling plan that would allow each Center to measure
nonconformance rates by ultimate storage depot and also by
contract administration activity.

DORO developed a stratified sampling plan model which,
simultaneously generates both sample sizes and the specific
items to be sampled. The model is intended to measure, by
Center, quality levels at six DLA depot complexes and at six
contract administration offices (local administration plus five
Defense Contract Management Districts). With this tool, each
Center can reliably measure, compare and track quality rates for
both depots and contract management activities. With sample
sizes about one order of magnitude higher than SAM, the model
provides greater resolution of quality levels.

Through the use of statistical sampling theory and advanced
linear and nonlinear programming, the stratified sampling plan
model accomplishes two important objectives. The plan minimizes
the total sample size for each Center. This is extremely
important because of the high cost to develop a test plan, pull a
sample and conduct the actual laboratory test. The stratified
plan also seeks to produce a sample distribution, among stratums,
which mirrors the overall population distribution.

iii

A nonlinear model using a quadratic objective function was
tested along with competing alternatives and found to best meet
the above objectives. This model minimizes overall sample size
and the total squared difference between the sampling and
population proportions of items. Thus, this model produces the
best "fit" of the sample to the population. It also guarantees
the lowest possible sample size to meet specified confidence and
precision levels. Documentation on the mathematical formulation
is provided as an attachment. The research conducted by DORO
formed the basis for a Master's Thesis, successfully defended and
published at Virginia Commonwealth University in May 1992.

The entire methodology was written as a user-friendly PC
model. This program will enable Center Laboratory Testing
personnel to enter a few variables and produce a stratified
sampling plan. In addition, the program randomly selects items
in accordance with the plan and produces a list of candidate
items for testing. It is recommended that DLA/DCMC-Q require all
DLA Hardware Supply Centers to use the stratified sampling model
for the random portion of the Laboratory Testing Program. The
model will provide high levels of resolution at lowest total cost
to the Center. It will also allow DLA to consolidate all Supply
Center data to assess quality levels from an Agency perspective.

A•oession For

\ DTIC TAO
Unwa i'ýurlc d

Distr~but.iof/

AvalabillitY Cod63

•Avail and/ar
[Dist Special

TABLE OF CONTENTS

Page

List of Figures ... vii

Abstract ix

Chapter 1 Introduction 1

1.1 Background 1
1.2 Problem Description 2
1.3 Components of Sampling Model 5
1.4 The Estimates for the Nonconformance Rates 16

Chapter 2 The Linear Model 19

2.1 Linear Model Formulation 19
2.3 Linear Model Solution Procedure 21

Chapter 3 The Quadratic Model 25

3.1 Quadratic Model Formulation 25
3.2 Relevant Properties of the Quadratic Model 27
3.3 Quadratic Model Solution Procedure 31

Chapter 4 The Maximum Deviation Model 34

4.1 Maximum Deviation Model Formulation 34
4.2 Maximum Deviation Model Solution Procedure 37

Chapter 5 Implementation 38

5.1 Matrix Reduction Techniques 38
5.2 Results 39

Bibliography 47

Appendix A 48

Appendix B 55

Appendix C 61

v

LIST OF FIGURES

Figure Page

1. DSC structure 4

2. Contracting office-depot array and constraints 10

3. The simplex algorithm 12

4. The quadratic objective function 26

5. Minimizing the maximum absolute deviation 34

6. Minimum sample size 41

7. Total absolute piroportion deviation 42

8. Total squared proportion deviation 43

9. Maximum proportion deviation44

10. PC execution time 45

vii

ABSTRACT

Optimal Sampling Plans

for Items

Representing Two Population Groups

This paper examines a problem of determining optimal sampling

plans. The items to be sampled belong to two distinct populations which

are partitioned into sub-populations that require sampling plans. Three

mathematical programming models are investigated that minimize the total

sample size while also ensuring that the proportion of samples closely

resemble the actual population proportions. Both linear and non-linear

programming techniques are used to find an optimal sampling plan. Fi-

nally, comparisons are made from the solutions generated by "real" data

for all three models.

ix

Chapter 1 Introduction

1.1 Background

During the past several years the Federal Government has been developing

new policies for purchasing supplies and equipment for the Military

Services. Emphasis used to be placed on saving the taxpayer's money

through purchasing from the lowest bidder (least expensive). More em-

phasis is now being placed on purchasing higher quality items that save

more money over time. One method for ensuring the quality of an item is

through laboratory testing. Testing can be expensive and time consum-

ing, but through proper sampling, the time and money spent on testing

can be kept to a minimum while yielding accurate results.

This paper examines estimating optimal sample sizes through the

use of linear and non-linear programming. In the problem presented,

there are two groups of distinct populations each requiring a sampling

plan. The first group has M populations and the second group has N

populations requiring a total of M+N sampling plans. However, the

individual items to be sampled belong to two distinct populations (one

from each group). Mathematical programming is applied to minimize the

total sample size while ensuring the necessary sample sizes of each

sampling plan.

This problem arose as a task for the Defense Logistics Agency's

quality assurance program. The following paragraphs describe the prob-

S• - -- -,-- -,,,mmm . n • • n • n • nmum 1

2

lem, three possible approaches (methodologies), and comparisons of the

three methodologies.

1.2 Problem Description

The Defense Logistics Agency (DLA) supplies goods that are commonly used

by United States military services. Critical repair parts, food, fuel,

medical supplies, and clothing must be acquired and delivered on time to

the American soldiers, sailors, and airmen stationed throughout the

world. DLA's goal is to support the services with quality materiel at

the best value to the taxpayer.

DLA takes ma precautions to ensure the quality of its items.

However, there exists some small proportion of its items that are

defective or do not meet design specification. These flawed items are

referred to as nonconforming.

In an effort to improve the quality of its items, DLA initiated

actions to develop a laboratory testing plan. The goals for the

laboratory testing plan are to: 1) determine the percent of items that

are nonconforming for all contracting offices and depots, and 2) provide

this information at the lowest possible cost (fewest samples).

Currently, DLA has no sampling plan to obtain the above informa-

tion and has tasked the Operations Research and Economic Analysis Man-

agement Support Office (DLA-DORO) to develop such a plan.

3

DLA-DORO determined that a successful sampling plan must not only

provide statistically sound sample sizes, but DLA's Quality Assurance

personnel must be able to easily generate a sample size in a timely

manner for "what if" analysis. To meet these requirements, the sampling

plan will ultimately be computed via a "user friendly" PC program. The

PC program will allow various user inputs to help determine the proper

sample size. Using a random number generator, the PC program will also

randomly select the items for sampling.

This paper looks at three models for determining the sample sizes.

The method that best meets DLA's needs will then be written as a PC

program.

More information pertaining to the structure of DLA and a clearer

definition of the problem is required before describing the sampling

plan.

First, DLA manages many different types of items that fall into

six categories (commodities). :.ach commodity is managed by a unique

Defense Supply Center (DSC). Each DSC purchases items through one of

six contract management offices. All six offices are responsible for

inspecting their items (source inspection) before shipping to any one of

six DLA warehouses (depots). Items are inspected again during the re-

ceiving process at the depot (destination inspection). Therefore, each

DSC can inspect an item by one of thirty-six contracting office-depot

combinations. In Figure 1, each arc represents a contracting office-

depot combination.

4

COT CN OTCONT CONT CONT

123 4 56

Figure I DSC structure

Notice that contracting office I has six arcs leaving while depot 1 has

six arcs entering. This pattern is repeated for the remaining 5 con-

tracting offices and depots.

Since DIA manages over 3 million different items, only a small

percent of the items are actually inspected at either source or

destination sites.

The goals of the sampling plan will be met by determining the

nonconformance level of each contricting office and depot and to provide

this information through the smallest total sample.

1.3 Components of the Sampling Model

This paper examines - ie 'eneralizec? sampling methodolugy that will be

.sed for all six DSCs. From here forward it will be assumed there are M

contracting offices and N depots. Therefore, there are MN variables

representing the sample sizes required for each of th• M+N sampling

plans.

Even though the required sample sizes reprenent a s~ngle DSC, the

total sample size will be taken strategically to return the nonconfor-

mance percent for the M contracting offices and N depots. In other

words, a single sample will represent more than one population.

Suppose the problem were to find the nonconformance percent of a

single depot. The nonconformance percent could be found by taking a

simple random sample from the population of items. The required size of

this sample can be found frt,;n the equation below. This equation will be

referred to as the simple random sampling formula and is based upon the

fact that, for a simple random sample from a population, the number of

nonconforming items in the sample has a binomial distribution with sam-

ple size n and nonconformance probability P. The formula is:

n - 7 2P(I-P)/e 2 ,

whe e

n - the required sample size.

6

P - the known (historical) nonconformance level. If P is unknown then

.5 is used to ensure a sample size sufficient for all possible values

of P.

e - allowed error level in the estimate of the actual nonconformance

level.

z - percentile for a standard normal random variable chosen to achieve

the desired confidence level. The confidence level gives the proba-

bility that the resulting sample size will give the estimated true

nonconformance level within the given error range.

Under most circumstances this formula will suffice. However, in-

accurate results may occur when the error, e, is greater than the non-

conformance level, P or (1-P). For example, suppose the nonconformance

rate of a certain depot is .03 and the desired error level is +.05. The

calculated sample size will be valid for the range of nonconformance

rates .03 + .05, or between -. 02 and +.08. However, since the noncon-

formance rate can never be less than 0, the calculated sample size does

not accurately reflect the chosen error level. This situation is

avoided by not allowing the error level to be greater than the noncon-

formance rate, P, or conformance rate (1-P). Very small or very large

nonconformance rates require small error levels for calculating sample

size.

It is worth noting the effect each parameter has on the resulting

sample size. Generally. to obtain higher confidence levels or smaller

error levels costs in terms of sample size. First, the sample size in-

creases geometrically when the allowed error is decreased. Next, as the

7

nonconformance level, P, approaches .5, the required sample size will

increase and is maximized when P equals .5. Increasing the confidence

level, thus increasing z, will also increase the required sample size.

Finding the nonconformance level of a single depot can be easily

accomplished using the simple random sampling formula. The same process

used for finding the nonconformance rate of a single depot could be re-

peated M+N-l times for the remaining N-1 depots and M contracting cf-

fices. Together, these M+N sampling plans would yield the

nonconformance level of all depots and all contracting offices and the

problem would be solved. However, though this methodology provides the

desired information, it will be demonstrated that the same results can

be obtained using a smaller total sample size.

Recall the structure of DLA. Each DSC purchases all items through

M contracting offices and then stores these items at N depots. It is

possible for a single item to be used to help estimate the nonconfor-

mance level for a depot and for a contracting office. In fact, with

DLA's database it is easy to identify where items are located and how

they were purchased. In other words, the total sample size may be re-

duced by allowing items to represent both the depot and contracting of-

fice. The remaining question is how to distribute the required sample

size among the MN variables and still maintain the desired confidence

level for each depot and contracting office.

Mathematical programming has been chosen for solving this problem

for two reasons. First, the goal, or objective of the problem, is to

8

minimize the total sample size. Second, this objective can only be met

while satisfying the specific requirements (constraints) of the M+N

sampling plans. As will be shown later, the objective function of the

three models considered differ, but the same M+N sampling plan require-

ments (constraints) are used for each model.

Consider the sampling process which will produce the data from

which nonconformance rates will be estimated. If sample size Xijis

selected from the population of items purchased through contracting of-

fice i and stored at depot j, and Bij is the number of nonconforming

items in this sample, then Bij has a binomial distribution with sample

size Xij and nonconformance probability P.., where Pi. is the proportion

of nonconforming items purchased (and shipped) through contracting of-

fice i. Then, the number, Bi., of nonconforming sample items shipped

from contracting office i is

N

Bi. - I Bij.
j-i

Here Bi. is a sum of independent binomial random variables, each with

nonconformance probability Pi., so itself is binomial with sample size

N

I Xi and nonconformance probability Pi.
J-1

The number, B J, of nonconforming sample items stored at depot j

is

M

B. - i BJ.
i-I

9

Here B.j is a sum of independent binomial random variables, each with

possibly different nonconformance probabilities, since Bij has noncon-

formance probability Pi. In fact, the sample which will be used to es-

timate the nonconformance probability for depot j is a stratified random

sample, each contracting office serving as a stratum. Since the number

of items, Nij, purchased through contracting office i and stored at de-

pot j, is known, then the proportion of items stored at depot j which

are from contracting office i,

M

Nij / Z Nij - Nij/ N j is known. The appropriate
1-i

estimate for the nonconformance probability for depot j is

M

X(NiI/N3j) (B±j/Xij) (Cochran, 1963).
i-i

Cochran further states that one working rule to use, assuming the cost

of sampling an item is the same for each stratum (here, a reasonable

assumption), is that the gain in precision in estimating the nonconfor-

mance probability from a stratified random sample is small or modest

unless the nonconformance probabilities. Pi.1, vary greatly from stratum

to stratum. Indeed, the sample selected to estimate the nonconformance

rate for contracting office i is a stratified random sample, with the

same nonconformance rate Pi. for each stratum. As in estimating the

nonconformance rate for the depots, the sample size formula for simple

random sampling can be used to provide a conservative required sample

size for each contracting office.

10

Since the Pi do not vary greatly, the sample size formula associated

with simple random sampling can be used in the planning phase of any

sampling study. The sample size constraint used for depot j will be

conservative, i.e., possibly larger than is actually needed to achieve

the allowed error level when estimating the nonconformance rate for de-

pot j.

Thus the simple random sample formula presented earlier is used to

determine the required sample size for each depot and for each

contracting office. These calculated sample sizes will be the right-

hand-side values of the M+N constraints. Recall that each depot re-

ceives items bought through all M contracting offices and each

contracting office buys items that are sent to all N depots. In other

words, each constraint representing a particular contracting office will

be the sum of N depot variables and each depot constraint will be the

sum of M contracting office variables. Figure 2 displays the con-

straints in a two-dimensional array.

X1,.1 + X1,2 + . .+ Xx.N 2: C1

X2 .1 + X2,2 + ... + X2 .N Ž C2

XMFi + xMCa2 + ofic-dpo + xr aN cntat

2 Di 2: D2 > DN

Figure 2 Contracting office-depot array and constraints

where

XiJ - the size of the sample taken from the population of items that

were purchased through contracting office i and stored at depot j,

Ci - the number of samples required for contracting office i,

Dj the number of samples needed for depot j.

Using sigma notation, the constraints defined in the array of Figure 2

are

N

ZXi > C. (for i - 1,2,..,M)
j.1

M

Xij 2! Dý (for j - 1,2,..,N)
s-i

X,4 > 0 (for . j -1,2 N.

These constraints possess a property that is useful in determining

the best, or optimal solution, namely that the set of feasible solutions

is a convex set. A set is convex if the line joining any two points on

its graph lies nowhere below the graph. Fortunately, since the above

constraints are all linear, they do in fact form a convex set.

The first and third models presented in this paper are solved as

linear programming problems (though the third model is converted into a

linear problem). An optimal solution to a linear programming problem

12

must lie at che point where two or more constraints intersect, i.e., at

extreme points of the convex set. Because of this fact, both models are

solved using the simplex algorithm.

The simplex algorithm was chosen because of its straightforward

and efficient manner for finding an optimal solution. It has two major

features for getting a quick result. First, the simplex algorithm will

only investigate extreme points. The algorithm travels from one extreme

point to the next adjacent extreme point without returning to any pre-

vious points. Next, since the constraints form a convex set, then each

time an extreme point is visited the objective function value will never

increase for minimization problems nor decrease for maximization prob-

lems. Extreme points that do not improve the objective value are not

visited. Figure 3 will help to graphically illustrate the simplex

algorithm.

Y I fe as if-le r ~ c

X

Figure 3 The simplex algorithm

In Figure 3, the set of feasible solutions lies in the first

quadrant, above lines (a) and (b), and to the left of (c). This region

13

has three extreme points, (1), (2), and (3). Except for the starting

point, the simplex algorithm will only investigate these extreme points,

and will continue to do so until no further improvement to the objective

function value is possible.

The second model is a nonlinear problem which uses a variation of

the simplex algorithm. The methodology for solving this model is dis-

cussed in Chapter 3.

Another consideration for the problem is the manner in which the

total sample is distributed among the depot and contracting office pop-

ulation for a particular DSC. Suppose a sample is taken to find the

nonconformance rate of a certain depot. Since each depot contains items

purchased through the N contracting offices, then more than likely, the

sample will also represent each contracting office. If a

disproportionate part of the sample represents a specific contracting

office, then the resulting nonconformance level may reflect that con-

tracting office and not the depot in question. Therefore, the sample

distribution should reflect the contracting office-depot item population

distribution of the DSC. The entire goal of the problem is to reach the

minimum sample size while having the sample size be proportional to the

depot-contracting office population proportion.

All three models require that their solutions (sample size) be

integer. It does not make sense to laboratory test partial items. One

method for obtaining integer solutions is through rounding. However,

care must be taken when rounding down because this may remove the solu-

14

tion from the feasible region. Rounding is necessary in the second and

third models, but is not needed in the first model due to its structure.

This unique structure is discussed in Chapter 2.

It is useful to know both the upper and lower bounds of total

sample size before actually solving the problem. An obvious lower bound

for the total sample size is the maximum between the sum of required

depot sample sizes and the sum of required contracting office sample

sizes. The total of the required sample sizes can never be less than

either the sample sizes required for all N depots or the sample sizes

required for all M contracting offices. The upper bound is the sum of

the total required depot sample sizes and the total reoiired contracting

office sample sizes. This sum is equivalent to the total sample sizes

required if M+N individual sampling plans, as mentioned earlier, were

used. If this sum is exceeded, then solving the problem as M+N

individual sampling plans (without having samples representing depots

and contracting offices simultaneously) as mentioned earlier, would be

more efficient. Therefore, solutions of interest will yield the total

sample size between

M N M N

Maximum(I Ci, I Di) and Z Ci + I Di.

i-i j.1 i-i j-1

Three mathematical programming approaches to finding optimal sam-

pling plans is the focus of this paper. The objective of all three

models is twofold. The first goal is to minimize the total sample size

15

while satisfying all constraints. The next goal is to have the propor-

tion of samples closely resemble the actual item population proportions.

Typically, optimization problems having more than one goal are

difficult to solve. In fact, many times, just oefining an optimal

solution may be difficult.

The models discussed in this paper in no way exhaust the possible

approaches for this problem. These three models were selected for their

clear interpretation, ease of solving, and reasonable solution to the

underlying problem.

All three models utilize similar constraints but have different

objective functions. The first model uses a weighted linear objective

function. Each of the MN variables is weighted with the inverse

proportion of the actual DSC population proportion. This method mini-

mizes the total sample size while making it more costly to sample from

areas of the population that make up a small portion of the true item

population.

The second model applies a quadratic objective function that rep-

resents the Euclidean distance from the true DSC population proportions.

Since the objective function reflects the distance between the sampling

and DSC population proportions, the total sample size will grow until

the minimization is met. It is therefore necessary to add an additional

constraint that sets an upper bound on the sample size. To ensure the

smallest possible sample size as the solution, the upper bound is set as

16

low as possible (usually equal to the lower bound). Due to the

quadratic objective function, this model is solved by Lemke's

complimentary pivoting method. A description of this method is given in

Chapter 4.

The third model also minimizes the distance from the true DSC

proportions, however, here the distance is defined as the maximum of all

absolute deviations. Even though the objective function is not linear,

the entire problem can be transformed into a linear model and solved

using the simplex algorithm.

In all three models, Xij denotes the sample size corresponding to

contracting office i and depot j for i - 1,2,...,M, j - 1,2,...,N, and

x - fXij] is an MN by 1 vector.

PC programs, written in C, were used to compare the three models.

Copies of the programs are provided as appendices A, B, and C.

Comparisons and results are discussed in Chapter 5.

1.4 The Estimates for the Nonconformance Rates

Although the allocation of sample sizes for the contracting office-depot

combinations is the main concern for this project, the method needed to

estimate the nonconformance rate and the actual margin of error for each

contracting office and each depot will be needed when the sampling plan

is implemented. The estimator and its standard error are well known

when the sample is a stratified random sample.

17

For contracting office i the estimator, II'j., for the nonconfor-

mance rate, ill., will be

N

H ',. - X (N 1j/N,.)(Bij/Xij), where

j-1

N

Ni. - Z Nij,

j-1

N

with standard error of l'i. - II' .(1-l'i.)/N2 . I N2
ij/Xia,

ji-i

and margin of error for estimating Hi. of z(standard error of IH'i). In

other words, the estimated nonconformance rate of contracting office i

is the weighted sum of the nonconformance rates of each contracting of-

fice-depot combination. For depot j the estimator, '.j, for the non-

conformance rate, HI., will be

M

Hf .3 - (Nij/N.j) (B~j/X 1 j) , where
i-i

M
N.j - N~j,

i-i

M

with standard error of Hl' j - 1I/N2 .2. N21j 'i.(l-Ir'i.)/X, ,
i-i

18

and margin of error for estimating I. of z(standard error of 1 J).

Chapter 2 The Linear Model

2.1 Linear Model Formulation

The first model is a linear programming model in which the two goals are

incorporated into the objective function. Recall that the task is to

minimize the total sample size while fitting the actual item population

proportion. Therefore, the Pojective equation is weighted to reflect

the item distribution for the DSC. Due to the objective equation being

a minimization, the weights will be the inverse proportion of the actual

population proportion. Thus the objective function is a weighted sum of

sample sizes.

M N

Minimize f(x) - Z w13 Xi.
1-i 3-1

where

X- the size of the sample taken from the population of items pur-

chased through contracting office i and stored at depot j,

x - [Xij] is an MN by 1 vector,

w- a weighting factor that equals l/(pij+l) with pij being the propor-

tion of items purchased through contracting office i and stored at

depot j.

The above objective function is subject to the M+N constraints

presented in section 1.2.

i9

20

Another desire, though not & requirement of the model, is to not

allow any Xis to equal zero. Even though X.J may be too small to be

significant, there may exist enough information to warrant further in-

vestigation. Letting XiJ equal zero, however, will not provide any in-

formation for that portion of the population. For this reason, a fixed

lower bound, PiJ, is set for each variable Xij.

The lower bound Pij is found by first determining the maximum be-

tween the sum of required depot sample sizes and the sum of required

contracting office sample sizes (as discussed in section 1.3), called

L*. Notice that to have identical proportions means that X.j - L~pij for

each i and j, where plj is the actual proportion of items purchased

through contracting office i and stored at depot j. However, this exact

fit comes at the cost of a large sample size. Therefore, 6,, -

L (p• •-) where r is some fixed tolerance level (a percent of p.,) and

L*(pij-rij) ý 0. The Linear Model, in its entirety, is formulated below:

H N

Minimize f(x) - I wij Xij,

i-i j-1

subject to:

N

SXiJ C, (for i - 1,2,...,M)

M

>Xi Di (for j - 1,2,..,N)
i-i

21

XiJ 2 6,ij (for i - 1,2 ,...,M, j - 1,2 ,...,N)

and Xi, is integer.

2.2 Linear Model Solution Procedure

The Linear Model is an integer programming problem. In general, integer

optimization problems, even those with linear constraints and linear

objective functions, are difficult to solve and require special tech-

niques for obtaining a solution. Fortunately, due to the structure of

the formulated Linear Model, using the simplex algorithm will produce an

all integer solution. The reason for this lies in the following para-

graphs.

Using matrix notation, the constraints can be expressed as Ax - b.

Matrix A can be partitioned as (B,G), and similarly, vector x can be

partitioned as (xB,xr).

If B'- exists, then it is useful to express the constraints as BxB

+CGx - b, where xE is a vector of basic variables and xr is a vector of

nonbasic variables. In this case, x. - 0, and solving for xB yields x.

- B-1b. Note that this equation is equivalent to x. - adj(B) b / det(B)

where adj(B) is the adjoint of B. Since adj(B) is the transpose of

signed minors of B, its entries will always be integer. By definition

of the problem, entries of vector b are also integer numbers. There-

fore, one way to guarantee that each basic variable in x. be an integer,

is for det(B) to be either +1 or -1.

22

The next several paragraphs prove that if B is a square submatrix

of A, then det(B) is indeed 0, +1, or -i.

Matrix A is said to be unimodular if the determinant of every

square submatrix of A is either 0, +1, or -1. In other words, A is

unimodular if and only if every submatrix of A is unimodular.

To show unimodularity, first let the combined coefficients of the

constraints and lower bounds make up a (M+N + MN) by (MN) matrix A. The

constraint coefficients make up a (M+N) by (MN) submatrix A' while the

lower bounds create a (MN) by (MN) identity matrix . Therefore

A' -I 0

A-

i 0 -I

From the above matrix, it can be seen that each element of matrix

A is either 0, +1, or -1. Therefore, every square submatrix of size 1

has determinant of either 0, +1, or -1.

Each column of matrix A may contain up to three l's (both +1 and

-1). Matrix A' contains two l's, matrix I contains one 1 in every col-

umn, and matrix -I contains one -1 in every column.

To show that matrix A is unimodular, four different cases must be

investigated and proved through induction. First, suppose the determi-

23

nant of all submatrices of A of size up to (m-I) is either 0, +1, or, -1

and let B be a square submatrix of size m.

Case 1. Let B be a square submatrix of matrix A containing a

column with no l's. By definition det(B) - 0 and B is unimodular.

Case 2. Let B contain a column with one 1 (either +1 or -I).

Now, expanding on the column containing the single 1 we have det(B) - +

det(B') where B' is the submatrix of D resulting from the deletion of

the column containing the single 1 and the corresponding row. From the

hypothesis, det(B') - 0, +1, or -1, which implies that det(B) - 0, +1,

or -1, and B is unimodvlar.

Case 3. Let every column of B contain at least two l's (else see

case 2).

Case 3a. All rows belonging to matrix A' represent the depot and

contracting constraints. By definition, the sum of the depot rows

equals the sum of the contracting rows, which is a vector of l's.

Therefore, submatrix B has a rank (the number of linearly independent

rows) less than m. In other words, det(B) - 0.

Case 3b. At least one row belongs to unit matrix I or -I. By

expanding on the row contained in I or -I we have the same situation

that appeared in case 2. All remaining elements of that row are zero

and B is unimodular.

Case 4. Let every column of B contain three l's. Since at least

one row is contained in I, B is unimodular as in case 3b.

24

Thus each extreme point of the feasible region is guaranteed to be

integer and the simplex method can be applied to find an optimal solu-

tion to the Linear Model.

Chapter 3 The Quadratic Model

3.1 Quadratic Model Formulation

The second model uses a quadratic objective function with linear con-

straints. Here the total squared distance between the sampling popula-

tion proportion and the actual DSC item population proportion is

minimized. The objective function of the Quadratic Model, to be mini-

mized, is:

M N

f(x) - y X (Xi- p-jt)2

i-l j-1

where

L - a chosen upper bound for the total sample size,

P =j the proportion of total items purchased through contracting office

i stored at depot j for a given DSC.

Figure 4 is a graphical representation of the Quadratic Model's

objective function. The concentric circles represent the contours of

the quadratic objective function. All points on each circle are at the

same Euclidean distance from its center. The closer the solution is to

the center of the circle the better the fit to the actual population.

If the solution is allowed to equal the center of the circle, then the

fit is perfect and the difference between sampling population proportion

and the DSC item population proportion is zero.

25

26

Yx

X

Figure 4 The quadratic objective function

As in the Linear Model, the first M+N constraints are required to

obtain the nonconformance level for each depot and contracting office.

However, since the Quadratic Model's objective function is designed so

that each XiJ approaches some proportion of the upper bound, the M+N

lower bound constraints are no longer required. Instead, a new single

constraint, limiting the sum of Xij to the upper bound, L, is added to

the problem. Usually L will be chosen as small as possible

M N

(e.g., set L - maximum{ Ci, Z Dj i)

1�- j.-1

The entire Quadratic Model is as follows:

M N

Minimize f(x) - I (Xij - pijL)2

i-i j-1

subject to:

N

SX~j > Ci (for i - 1,2,.. ,M)

j-1

27

M

Xij > Dj (for j - 1,2,.. 2 N)
i-1

M N

X Z Xtj < L

1-i j-1

Xij Ž 0 (for i - 1,2,...,M, j - 1,2,...,N).

Recall that minimizing the total sample size is still of major

concern. Without the third constraint the total sample size will in-

crease until the perfect fit is found. From a practical standpoint, a

"perfect" fit is usually not needed but a "good" fit is necessary. The

third constraint can be used for determining the proper balance between

sample size and a sufficient fit.

It may be of interest to know how large is the total sample size

required for a perfect fit The next section includes the examination

of this number.

3.2 Relevant Properties of the Quadratic Model

The first property of the Quadratic Model is that as the upper bound L

increases, the total squared deviations approach 0. To calculate the

upper bound that achieves this perfect fit, the contracting office or

depot requiring the most samples must first be identified. If, by using

a large enough upper bound, a perfect fit is met for this depot or con-

tracting office, then the remaining depots and contracting offices will

28

have a perfect fit as well. First note that the squared deviations

equal 0 when Xi, - p1 jL. For the solution to be feasible, L must satisfy

the following inequalities:

N N

I Xi - I PiJ L >C C (for i -
J-1 j-1

M M

SXJ - ijPl L > Dj (for j - i ... N).
1-1 i=1

Therefore, if

N M

L > maximum(Ci/ pij, DJ/XP±j),
i.j j.1 i-1

then all variables will have a perfect fit.

Usually, solving a nonlinear programming problem is considerably

more difficult than solving a linear programming problem. However, be-

ing quadratic, the second model has properties that allow for a rela-

tively easy solution.

Suppose the problem were to minimize some nonlinear differentiable

objective function, h(x), subject to no constraints (unconstrained). An

optimal solution would occur at a vector x* where the first partial de-

rivative Vh(x*) - 0. Having Vh(x*) - 0 is a necessary condition but it

does not guarantee that x* is an optimal solution (only that x* may be

one of many potential optimal solutions). However, if h(x) were a con-

vex function, then this would be a sufficient condition. And, if h(x)

29

were a strictly convex function , then there could exist only one x*,

where Vh(x*) - 0, and this vector would be the unique optimal solution.

One method for finding x*, is to solve the system of simultaneous equa-

tions that set all partial derivatives Vh(x*) to zero. In case of con-

strained optimization, necessary and sufficient conditions for a vector

x* to be optimal are referred to as Karush-Kuhn-Tucker conditions.

These conditions will be prescribed for the following problem with

linear constraints, called problem A:

minimize h(x)

subject to

Ax > b

x > 0.

The Karush-Kuhn-Tucker conditions state that if h(x) is a convex

quadratic function, that is

h(x) - .5xtHx + ctx,

where H(x) is a positive semidefinite matrix, then x* is an optimal

solution if and only if there exist vectors y, u, and v which solve the

system

30

(1) -Hx" - Atu + v - c

(2) -Ax* + b + y -0

(3) ut(-Ax" + b] - 0

(4) xv - 0

x*,yuV > 0.

Moreover, if H(x) is a positive definite matrix, then h(x) is strictly

convex, in which case an optimal solution is unique.

Notice from equation (2) that y - Ax - b. Substituting y into

equation (4) produces uty - 0. The system of Karush-Kuhn-Tucker equa-

tions is now

(1) -Hx - Alu + v - c

(2) -Ax + b + y - 0

(3) u t v- 0

(4) xtv - 0

x,y,uv > 0.

The constraints x~v - 0 and uty - 0 have special meaning in that

they do not allow for both x and v, or u and y, to be basic variables at

the same time when considering feasible solutions. Pairs of variables

where only one is allowed in the basis at a time are called

complementary variables.

Using matrix notation, the objective function can be rewritten as

f(x) - xtx -2Lptx + ptp. This is a quadratic function, and this func-

31

tion is strictly convex. Strict convexity can be easily verified by

noticing that the Hessian matrix H of f(x) is positive definite. The

Hessian matrix of f(x) is the matrix of the second partial derivatives

of f(x). For the case of f(x) in the Quadratic Model, H - 21. Thus the

quadratic form xtHx - 2xtx and is positive for all nonzero vectors x.

With this information, the Karush-Kuhn-Tucker conditions can be utilized

in determining an optimal solution.

3.3 Quadratic Model Solution Procedure

Expressing the Karush-Kuhn-Tucker conditions as a linear complementary

problem allows use of Lemke's complementary pivoting algorithm.

The linear complementary problem is to find vectors w and z such

that

w - Mz - q

wz >O

wtz - 0.

If q is not > 0, as is the case of the Quadratic Model, then a new

column 1 and an artificial variable are introduced, resulting in the

following system.

w - Mz -1zO - q

w, z, z. 0

wtz - 0.

32

The initial basic feasible solution is found by letting z. -

maximum(-q: q, : 0), z - 0, and w - q + Izo . Lemke's algorithm makes

pivots until the artificial variable, z0 , is driven out of the basis.

The algorithm also excludes an entering basic variable whose complemen-

tary variable is currently a basic variable. The choice fri the enter-

ing variables is made among the remaining nonbasic variables by the

minimum ratio test used in the simplex algorithm. Rows and columns are

updated as in the simplex algorithm.

In order to apply Lemke's algorithm to solve the Karush-Kuhn-

Tucker system, matrix M and variables q. w, and z need to be identified.

Note that equations (1) and (2) may be expressed as

0 Ax + y - -b

-Atu - Hx + v - c.

The complementary variables are represented by the manner in which

Lemke's algorithm selects entering variables.

Now letting

0 -A -b y u

M- H, w-, zv-

AL 1 , c v x

33

where c - 2LP, allows Lemke's algorithm to be applied to the Quadratic

Model.

One minor drawback to the Quadratic Model is that unimodularity is

lost and integer solutions are no longer guaranteed. However, carefully

rounding the solution (not violating any constraints) will maintain

feasibility.

Chapter 4 The Maximum Deviation Model

4.1 Maximum Deviation Model Formulation

The third model minimizes the distance from the true DSC population

proportion, however, distance is now defined as the maximum absolute

value of the difference between the sampling population and the actual

population.

The Maximum Deviation Model's objective function is not linear,

but can be transformed into a linear function by adding several vari-

ables. Figure 5 is a graphical representation of the third model.

x

Figure 5 Minimizing the maximum absolute deviation

Again, the center point is where the perfect fit lies. Due to the

absolute value function, the contours of the objective equation form

squares. All points on a given square are the same distance from the

perfect fit.

34

35

The Maximum Deviation Model is currently expressed as:

Minimize z - Maximum IXij - pijLI
ij

subject to

N

Xij _> Ci (for i - 1,2,.., M)

j-1

M

IX 1 j > Dj (for j - 1,2,.. ,N)

i-I

M N

i-i J-i

Xi, Ž 0 (for i - 1,2,. M, j - 1,2,. N),

where

aJa - the absolute value of any argument a and L is the upper bound de-

scribed in Chapter 3.

The first difficulty arising from this type of objective function

is in expressing the absolute value as a linear function.

Notice that the difference Xij piL may be positive or nega-

tive, but by taking the absolute value of this difference, a nonnegative

number will always result. One way to capture this expression linearly

is to let

J+ - Xj- X -j p 3jL

36

where both X and X,, are > 0. The equivalent linear objective func-

tion is

z - Maximum (Xi, + Xij-.

ij

Therefore, the following constraints must be added for each i and j:

XiJ- X + + XiJ- -pijL

X1j X ii > 0.

Now to express the current objective function as a single mini-

mization problem let z > Xij + X,, and add the following constraints:

z - - Xij- > 0, i-liM, j-1. N.

The objective function is now

Minimize z.

Notice that z > Xj ++ XIJ- for each i and j. These equations, combined

with the objective function, imply that the largest X,, + XJ- equals

the smallest z. Therefore, an optimal solution will make the largest

XiJ + Xij- as small as possible. Thus the Maximum Deviation Model has

been fully converted into a linear programming program that may be

37

solved using the simplex algorithm. The Maximum Deviation Model, in its

entirety is shown below.

Minimize z

subject to

z > X++ XiJ" (for i - 1,2,...,M, j - 1,2,...,N)

Xij + X 1j+ - Xij- - piJL (for i - 1,2,..., M, j - 1,2,..., N)

N

Z Xi> Ci (i-i ... M)

j-1

M
SXij > Dj (j-I N)

1=1

XiJ, fXJ, X-i, > 0 (for i - 1,2,...,M, j - 1,2,..., N).

4.2 Maximum Deviation Model Solution Procedure

The Maximum Deviation Model has been transformed to a linear programming

problem which can be solved by the simplex method. However, due to the

added constraints, unimodularity has been lost and the solution may not

be integer. Again, as in the Quadratic Model, the solution can be

rounded and still maintain its feasibility.

Chapter 5 Implementation

5.1 Matrix Reduction Techninues

Ultimately, the model which best meets DLA's needs will be written as a

user friendly PC program. Because DLA has six contracting offices and

six depots, resulting in thirty-six variables, none of the models appear

too large for PC use. However, some of the models require additional

variables and constraints and some require surplus and artificial vari-

ables for conversion to simplex form.

Recall that the Linear Model requires thirty-six additional con-

straints for its lower bounds. These new constraints also require

thirty-six surplus variables and thirty-six artificial variables. After

converting the Linear Model into standard simplex form, a forty-eight by

one-hundred-and-thirty-three matrix was required to solve the problem.

Aside from taking up crucial PC memory, the model also ran slowly due to

the number of calculations required for the numerous rows and columns.

Two matrix reduction techniques were employed to speed up model

execution time. In the Linear Model, the thirty-six lower bound con-

straints, Xij •i• i, were eliminated by a simple transformation. Letting

XFij - Xij -ij - 0, allows substituting X'lj for Xjj + Bij and thus

removing all thirty-six lower bound equations. After solving the Linear

Model, the transformation is reversed by solving for Xjj.

38

39

Another technique was used to reduce the number of artificial

variables needed to represent the first twelve constraints in standard

form.

First, all twelve constraints were multiplied by -1 to convert the

constraints to <"" equations as opposed to their original ">" signs.

The constraints were then converted into equalities by adding slack

variables. Note that at this time the right-hand-side of all twelve

constraints is negative, which is not allowed in the simplex algorithm.

Next, the equation that had the most negative right-hand-side value was

subtracted from each of the remaining eleven constraints. Now these

eleven constraints have non-negative right-hand-side values and the

simplex algorithm can be applied. All that remains is to multiply the

remaining constraint by -1 and add an artificial variable.

These techniques are mentioned only because they proved helpful in

the execution time for all three models. They proved particularly use-

ful for the Maximum Deviation Model, which with its many additional

variables, was originally too large for PC programming.

5.2 Results

Two performance indicators were used to compare the three models. The

first indicator was easy to measure since it examined the total required

sample size. Obviously, smaller sample sizes are more desirable than

larger sample sizes. The second indicator is made up of three compari-

sons, each designed to measure how closely the distribution of sample

40

sizes fits the DSC population. The three comparisons are by: 1) total

absolute proportion deviation 2) total squared proportion deviation,

and 3) maximum proportion deviation.

These comparisons were made using as much real data as possible.

The actual population proportions were obtained from DLA's database and

all confidence and error levels were set to values which would typically

be used by DLA (95% and 5%, respectively). Nonconformance rates were

estimates using prior information.

All three models performed equally well for minimizing the total

sample size of this example. Since the sum of required depot sample

sizes was 572 and the sum of the required contracting office sample

sizes was 611, the lower bound in all three problems was 611. All three

models produced 611 as the minimum sample size while distributing the

samples differently. However, the Quadratic Model and the Maximum

Deviation Model, as expected, produced non-integer solutions that re-

quired rounding. As a result, their sample sizes rounded to numbers

slightly higher than 611. See Figure 6 for these results.

41

TOTAL SAMPLE SIZE
700-

650 - 611 628 623
600 -

550 -

500 -

450 -

400-

350-

300-
250 -

200 -

1M-
3100-

BD-

LINEAR QUADRATIC MAX DEVIATION

Figure 6 Minimum sample size

As seen in Figure 6, there is no noticeable difference between the

three models for obtaining the minimum required sample size.

The next three graphs compare the models by how well their solu-

tions fit the DSC item population proportion. These comparisons not

only distinguish fit at the minimal sample size, but also investigate

fit for sample sizes that exceed the possible lower bound. Even though

the minimal sample size is 611, in this example, the upper bound is in-

creased in search of a superior fit. This may be of interest for

determining the cost of obtaining a better fit. The first of these

graphs, Figure 7, examines the total absolute proportion difference of

each model's solution.

42

TOTAL ABSOLUTE PROPORTION DEVIATION

LI-

:1

9
B

6

5

3
2 -QUADRATIC

611 1000
SAMPLE SIZE

Figure 7 Total absolute proportion deviation

Notice that the linear model showed no improvement as the sample

size (lower bound) increased. This results from the Linear Model's

tolerance level being constant. As the sample size is increased, the

tolerance level may be reduced giving a closer fit to the actual

population. It is also important to notice that the Maximum Deviation

Model did not perform well for small sample sizes. Recall that this

model minimizes the maximum absolute deviation and does not minimize the

total absolute deviation.

Figure 8 depicts the total squared proportion deviation of the

three model's solutions.

43

TOTAL SQUARED PROPORTION DEVIATION

4 01n -

35m -

25m-

20M -LNA

15M -
loin -

5m - QUADRATIC
MAX DEVIATION

611 1000
SAMPLE SIZE

Figure 8 Total squared proportion deviation

As expected, the Quadratic Model, whose objective function paral-

lels this comparison criterion, performed better than the other two

models. Again, the constant tolerance level of the Linear Model kept it

from performing as well with large sample sizes.

In Figure 9 is shown a comparison of the models according to the

maximum deviation of all variables criterion.

44

LARGEST PROPORTION DEVIATION

.3 -

.13 -

.12

.1

90m
80m
70m -
60m -501nm

43 - UUADRATIC
2Oin - m
20mn
lOrn- MAX DEVIATION

611 1000
SAMPLE SIZE

Figure 9 Maximum proportion deviation

This criterion paralleled the Maximum Deviation Model's objective

function, resulting in its good performance. It is interesting to note

that for the Linear Model, there was actually increased maximum devi-

ations as the sample size increased. This is due to the fact that the

Linear Model was designed to perform well using the minimum upper bound.

Recall that the individual lower bounds are some fraction of the overall

lower bound (which in this case is 611). The tolerance level is set

fairly "loose" to make the overall lower bound attainable. A "tighter"

tolerance level is beneficial for larger sample sizes, but prevents the

model from reaching the minimal sample size.

Another area for consideration, specific to DIA, is PC execution

time. Many of DLA's computers lack math co-processors causing programs

with intensive mathematical operations to run slowly.

45

The Maximum Deviation Model has considerably more variables than

the other two models and requires many more computations for a solution.

Figure 10 shows the typical PC clock time for the three models. This

test was run on a 33MHz PC that did not have a math co-processor.

TIME IN SECONDS

347
350-

300 -

250 -

200 -

150

575D-

4

LINEAR QUADRATIC MAX DEVIATION

Figure 10 PC execution time

Arguments can be made for the effectiveness of all three ap-

proaches, depending on what is important to the decision maker. In this

example, the Quadratic Model was the overall superior performer.

Biblilography

46

47

Basaraa, Mokhtar S., and Shetty, C.M., Nonlinear Programming Theory and
Algorithms, John Wiley & Sons, New York, NY, 1979.

Cochran, William G., Sampling Techniques, second edition, John Wiley &
Sons, New York, NY, 1963.

Lee, Sang M., Moore, Laurence J., and Taylor, Bernard W. III Managemenc
Science, second edition, WCB, Dubuque, IA, 1985.

Luenberger, David G., Linear and Nonlinear Programming, second edition,
Addison-Wesley, Reading, MA, 1984.

Hillier, Frederick S., and Lieberman, Gerald J., Introduction to Opera-
tions Research, third edition, Holden-Day, Oakland, CA, 1980.

Salkin, Harvey M., and Mathur, Kamlesh, Foundations of Integer Program-
ming, North-Holland, New York, NY, 1989.

Walpole, R., and Myers, K, Probability and Statistics for Engineering
and the Scientists, third edition, MacMillan, New York, NY, 1985.

Yamane, T., Elementary Sampling Theory, Prentice-Hall, Englewood Cliffs,
NJ, 1967.

Appendix A

48

49

C code used for solving the Linear Model

MODEL 1
/* Model 1 is solved using the simplex algorithm

#include <conio.h>
#include <alloc.h>
#include <stdio.h>

/* void message(int); */

struct basis-info

float cj value;
int cj_index;

BASIS[601;

void main()

float a(13][51];
float cj[60];
float zj[60];
float samp(37];
float p[37];
float pivot - 0;
float max - 0;
float min - 0;
float row factor - 0;
float minimum-ratio - 0;
float z calc - 0;
float total samples - 0;

float 1_bound - 14;

int enter, leave, b, iterations, exx, why;
int i, j, optimal, b vector, unbounded, columns, rows;
int err message, b var;
int testl;

clrscro;
textbackground(BLUE);
textcolor(WHITE);
columns - 50;

rows - 12;
b vector - columns;
iterations - 0;
errmessage - 0;

50

/* insert the actual DSC proportions here

/* inititialize all coefficients to zero */
for (i-1; i<-rows; i++)

samp[i] - 0;
for (j-1; j<-columns; j++)

a[i][j] - 0.0;

set up constraint column coefficients to equal -1 */
for (i-l; i<-6; i++)

for (j-l; j<-6; j++)

a[i][i+(j-l)*6] - -1.0;

/* set up constraint row coefficients to equal -1 */
for (i-7; i<-12; i++)

for (j-l; j<-6; j++)

a[i][(i-7)*6+j] - -1.0;

/* set up constraint slack variables
for (i-1; i<-12; i++)

a[i][36+i] - 1.0;
column and row RHS values

/* lower bounds incorporated into constraints */
/* insert RHS of first 12 constraints here */

max - 0;
/* find constraint with most negative RHS */
for (i-l; i<-12; i++)

if (a[i][b vector] < max)

enter -

max - a[i][b vector];

51

/* subtract most negative constraint from remaining constraints */
for (i-1; i<-12; i++)

if (i !- enter)

for (j-l; j<-columns; j++)

afi][j] - a[i][j] - a[enter][j);

/* mulitply the max row by -1 */
for (j-1; j<-columns; j++) a[enter][j] -- a[enter][j];

/* add the single artificial variable
a[enter][49] - 1.0;

/* the objective function coefficients *1
for (i-l; i<-36; i++) cj[i] - l/(p[il+l);

/* the slack and surplus variable's coefficients */
for (i-37; i<-48; i++) cj[ii - 0.0;

/* artificial variable-big Mts
cj[49] - 1000000;

/* set the slack variabless and artificial as basic */
for (i-i; i<-12; i+-+)

if (i !- enter)

BASIS[i].cjindex - i+36;
BASIS[i].cj value - cj[i+36];

)
else

BASIS[i].cjindex - 49;
BASIS[i).cj value - cj[49];

optimal - 1;
clrscro;
gotoxy(10,5);
cputs("ITERATIONS # ");

52

/* the simplex algorithm */
while ((optimal -- 1) && (errmessage -- 0))

gotoxy(30,5);
cprintf(" %d ",iterations);

iterations - iterations + 1;

max - 0;
optimal - 0;

for (j-l; J<-columns-1; j++)

z calc - 0;
for (i-1; i<-rows; i++) /* calculate Zjs */

z_calc - z_calc + a[i][j]*BASIS[i].cj value;

zj[j] - zcalc;
if (zj[j] cj[j] > max) /* test for optimality */

optimal - 1;
max- zj[j] cj[j];
enter - j; /* determine entering variable */

if (optimal - 1) /* not optimal */

/* the entering variable is xj */
/* determine the leaving variable */

min - 100000000;
unbounded - 0;
testl - 0;

for (i-i; i<-rows; i++)

if ((afi][enterl > 0) && (a[i][b vector] >- 0))

testl - 1;

unbounded - 1;
minimumratio - a[i][b vector] / a[i][enter];

if (minimumratio < min)

leave - i;
min - minimum-ratio;

if (testl 0-) err_message - 1; /* test for unboundedness */

53

/* swap the basic variables
BASISjleave].cj_value - cj[enter];
BASIS[leave].cj index - enter;

if (unbounded -- 0) optimal - 0;

pivot
if (optimal - 1)

/* divide the entire pivot row by the pivot element */
pivot - a[leave][enter];
for (j - 1; j <- columns; j++)

a[leave][j] - a[leave][j] / pivot;

/* now update the remaining rows */
for (i - 1; i<- rows; i++)

if ((i !- leave) && (a[i][enter] !- 0))

rowfactor - aflj]enter] / a[leave][enter],
for (j - 1; j<- columns; j++)

a[i][j] - -1* rowfactor * a[leave][j] + a[i][j];

) 1/* optimal - the pivot routine */
/* if (optimal - 1)
1* end while loop

if (optimal 1-) /* test for non feasibility */

for (i - 1; i<- 48; i++)

if (BASIS[i].cjindex > 84) errmessage - 2;

if (errmessage !- 0) /* message(err_message); */

clrscro;
exx - 5;
why - 2;

/* the print routine
if (err-message - 0)

clrscro;
totalsamples - 0;
for (i - 1; i <- 36; i++)

.. ...

54

for (j - 1; j<- columns; J++)

b var - 1;
if (BASIS [j I.cj index - i)

b-var - 0;
sanipti] - a~ij[columnsl+l bound;
j - columns;

if (b-var - 1) samptil - 1_bound;

total_samples - total_samples + samp~i];

if (exx > 50)

exx - 5;
why - why + 1;

gotoxy(exx, why);

cprintfC" %d %3.lf "Ji, sampliD);
exx - exx + 20;

1* end if err messa ge-- 0

b -getcho;

b - b + 1;

Appendix B

55

56

C code used for solving the Quadratic Model

MODEL 2

/* this program makes use of Lemke's algorithm and solves
/* the following system x -Mz -Izo - q

#include <conio.h>
#include <alloc.h>
#include <stdio.h>
#include <math.h>
#include <stdlib.h>

void message(int);

struct basis-info

float cjvalue;
int ys;

) BASIS[50];

void main()

/* *
/* note a[i][981 is the RHS values (Bi) and
/* a[O][j] is not used

float a[50][101];
float p[401;
float int-part[40];
float rhs[13];
float min;
float rowfactor;
float minimum_ratio;
float totalsamples;
float pivot;
int low bound-611;
int columns - 100;
int rows - 49;
double intpart, fract;

int b, iterations - 0, exx, why;
int i, j, optimal, unbounded, index, zo, newbasic;
int err message - 0, oldbasis, ray_termination;
int colspot, row-spot;

clrscro;
textbackground(BLUE);
textcolor(WHITE);
/* insert the actual DSC proportions here

57

/* inititialize all coefficients to zero

for (i-i; i<-rows; i++)

for (j-l; j<-columns; j++)

a[i][j] - 0.0;

set up I, the unit matrix 49X49 */

for (i-l; i<-rows; i++)

for (j-l; j<-rows; j++)

if (i - j) a[i][j] - 1.0;

/* set up -A matrix. Since Lemke's uses -M, leave positive *1

/* the column constraints

for (i=l; i<-6; i++)

for (j-63; j<-68; j++)

a[i][(i-l)* 6 +j] - -1.0;

/* the row constraints *1
for (i-7; i<-12; i++)

for (j-63; j<-68; j++)

aliJ[6*j- 3 2 2 +i] -1.0;

/* set up upper bound constraint; all xij <- low-bound */

for (j-63; j<-98" j++) a[13][j] - 1.0;

/* set up A transpose which is negative due to -M */

for (i - 1; i<- 36; i++)

for (j - 1; j<- 13; j++)

afi+13][J+ 4 9] - -a[j][i+62],

58

/*set up H, the negative Hessian matrix of the objective value*/

/* In this case, H - -21
for (i-I; i<- 36 ; i++)

for (j-1; j <-36; j++)

if (i -- j) a[i+13][j+62] - -2.0;

/* set up column of -is representing artificial variable Zo */

for (i-I; i<-rows; i++)

a[i][columns-l1 - -1.0;

/* insert column and row RHS values here
/* set-up remaining RHS cloumn, which is made up of c
for (i-1; i<-36; i++)

a[i+13][columns] - -2*p[i]*low bound;

optimal - 1;
clrscr);
gotoxy(l0,5);
cpý:ts("ITERATION # ");

/* initialization step
/* set up basis as the first 48 variables
for (i-1; i<-rows; i++)

BASIS[i].ys - i;

min - 100000;
/* set the artificial variable Zo as basic
for (i-1; i<-rows; i++)

if (a[i][columns] < min)

min - a[i][columns];

rowspot -

colspot - BASIS[row spot].ys + rows;
BASIS[row spot].ys - columns-i;
/* pivot and update
for (j-l; j<-columns; j+-+) a[row-spot][j] -- a[rowspot][j];

for (i-l; i<-rows;'i++)

for (J-1; J<-columns; J++)

if(i !- row-spot) ati][ji - a[row-spot](j] + a[i)[j];

59

/* Lemke's algorithm
/* stop when zo leaves basis
while ((optimal -- 1) && (err-message 0))

gotoxy(30,5);
cprintf(" %d ",iterations);

iterations - iterations + 1;
min - 100000;
optimal - 0;
raytermination - 0;

for (i-1; i<-rows; i++)

if (a[i](col_spot] > 0)

raytermination - 1;
optimal - 1;
minimumratio - a[i][columns] / a[i][colspot];
if (minimum-ratio < min)

row spot -

min - minimum-ratio;

pivot
if (optimal - 1)

/* divide the entire pivot row by the pivot element */
pivot - a[row spot][colspot];
for (j - 1; j <- columns; j++)
I

afrow-spot)[j] - a[row-spotll[j] / pivot;

/* now update the remaining rows */
for (i - 1; i<- rows; i++)

if (i !- row_spot)

rowfactor - a[i][colspot) / a[row-spot)[col_spot];
for (j - 1; j<- columns; j++)

aji][j] - -i* rowfactor * airow spot] [j] + ali][j];

old basis - BASIS[row spot].ys;
BASIS[rowspot].ys - colspot;
if (old basis > rows) col_spot - oldbasis-rows;
else col spot - old basis+rows;

60

/* optimal - the pivot routine

if (oldbasis -- columns-i) optimal - 0;

end while loop

if (err_message !- 0) message(errmessage);

clrscro;
exx - 5;
why - 2;

/* the print routine */
if (err-message -0)

total samples - ;
for (i - 1; i<- 36; i++)

for (j - 1; j <- rows; j++)

if (BASIS[J].ys - i+62)

fract - modf(a[j][columns], &intpart);
if (fract > 0) intpart - intpart 1- 1;
int part[i] - iLatpart;
totalsamples - total-samples + intpart;
if (exx > 50)

exx - 5;
why - why + 1;

gotoxy(exx, why);
cprintf(" %d %f ",BASIS[j].ys-a2, intpart);
exx - exx + 20;

j - rows;

/* end the print routine */

/* end if err message - 0
b - getcho;
b - b + 1;

)1

.'.pendix C

61

62

C code used for solving the Maximum Deviation Model

/* the third model is solved using the simplex algorithm */
/* x- and x+ - -y and v respectively

#include <conio.h>
#include <alloc.h>

#include <stdio.h>
#include <math.h>

struct basis-info

float cj value;
int cj _index;

1 BASIS[86I;

void main()

float a[86][1611;
float cj[161];
float zj[161];
float samp[86];
float p(8 6];
float apl[86];
float int part[86];
float pivot - 0;
float max - 0;
float min - 0;
float row factor - 0;
float minimum-ratio - 0;
float z calc - 0;
float total_samples - 0;
float 1 bound - 611;
float rowt-0, colt -0;
short rows-85;
short columns-160;
double intpart, fract;
short enter, leave, b, iterations, exx, why;
short i, j, optimal, b vector, unbounded;
short errmessage, bvar, testl;

clrscro;
textbackground(BLUE);

textcolor(WHITE);
b vector - columns;
iterations - 0;
err_message - 0;
/* insert the actual DSC proportions here

63

/* inititialize all coefficients to zero
for (i-1; i<-rows; i++)

intpart[i] - 0;

sampli] - 0;
for (j-l; j<-columns; j++)

a[i][j] - 0.0;

/* insert the RHS for first 12 rows here

set column coefficients to equal 1 */
for both -y and v */

for (i-1; i<-6; i++)

for (j-l; j<-6; j++)

a(i)[37+i+(j-1)*6] -- 1.0;
a[i][73+i+(j-l)*6] - 1.0;

set row coefficients to equal 1
for both -y and v

for (i-7; i<-12; i++)

for (j-l; j<-6; j+-)

a[i][(i-7)*6+j+37] - -1.0;
a[i][(i-7)*6*j+73] - 1.0;

/* set the surplus variables

for (i-1; i<-12; i++)

a[i][i+109] - -1.0;

/* set the lower bound constraint */
for (j - 1; j<- 36; j++)

a[131[j+371 - -1.0; /* -y */
a[13][j+73] - 1.0; /* v

/* set up bound artificial variable and RHSI-
a[131[158] - 1.0;
a[13][bvector] - 0;

64

set up x + y - v - pl

for (i-14; i<-49; i++)

a[ijfi-13] - 1.0; /*x */
a[i][i+24] - 1.0; /* -y */

a[i][i+60] - -1.0; /* +v
a[i]lb_vector] - pji-13]*1 bound; /* PL the RHS */

/* calculate APL
/* aPL
for (i-i; i<-12; i++)

apl[i] - 0;
for (j-1; j<-36; j++)

apl[i] - apl[i] + (a[i][j+73) * a[j+13][b_vector]);

/* b -APL
for (i-i; i<-12; i++)

a[i][b vector] - a[i][bvector] - apl[i];

/* find the largest RHS of first 12 constraints */
max - 0;
enter - 0;
for (i-1; i<-12; i++)

if (a[i][bvector] > max)

enter -

max - a[i][b_vector];

/* convert all + RHS constraints, except largest RHS, to - RHS */
for (i-1; i<-12; i++)

if (a[ij[bvector] > 0)

if (i !- enter)

a(i][b vector] - a[i][b vector] - a[enter][bvector];
for (j-38; j<-121; j++) /* used to be to 121 */

a[i][j] - a[i][j] - a[enter][j];

65

/* convert all -RHS to +, and convert -I to +1 for the basis */

for (i-1; i<-12; i++)

if (a[i][b vector] <- 0)

for (j-38; j<-columns; j++)
I

a[i][j] - -a[i][j]"

/* need 1 artificial variable
if (enter > 0) a[enter][159] - 1;

/* set up z vector -z + y + v <- 0 multiply by -1

for (i-50; i<-85; i++)

a[i][37] - -1.0; /* -z */
a[i][i-12] - 1.0; /* y */
a[i][i+24] - 1.0; /* v
a[i][i+721 - 1.0; /* the slack variables */

/* the objective function coefficients
for (i-1; i<-columns-l; i++) cj[i] - 0;

/* z - 1

cj[371 - 1.0;

/* set the 2 big M variable's coefficients */

for (i-158; i<-159; i++) cj[i] - 100000,
i-0;
/* set the 11 surplus variables and 1 artificial as basic

for (j-1l0; j<-121; j++)

i++ ;

if ((j - 109) !- enter)

BASISfi] .cjindex - j;

BASIS[i].cjvalue - cj[j];

else

BASIS[i].cjindex - 159;
BASIS[i].cj value - cj[159];

/* set 1 artificial variable as basic var
for (j-158; j<-158; j++)

BASIS(131.cj _index - J;
BASIS[13].cj _value - cj[j];

66

/* set 36 x variables as basic

for (j-l; j<-36; j++)

BASIS[j+13].cjindex - j;
BASIS[j+l3].cj value - cj[j];

/* set 36 slack variables as basic *1
for (j-122; j<-157; j+-+)

BASIS[j-72].cj index - j
BASIS[j-72].cj _value - cj[j];

optimal - 1;
clrscr);
gotoxy(lO,5);
cputs("ITERATIONS #

/* the simplex algorithm
while ((optimal - 1) && (errmessage -- 0))

gotoxy(30,5);

cprintf(" %d ",iterations);
iterations - iterations + 1;

max - 0
optimal - 0;
for (j-l; j<-columns-l; j++)

z calc - 0;
for (i-1; i<-rows; i+-+) /* calculate Zjs

z_calc - zcalc + a[i][j]*BASIS[i].cj_value;

zj[j] - z-calc;
if (zj[j] cj[j] > max) /* test for optimality

optimal - 1;
max - zj[j] - cj[j];
enter - j; /* determine entering variable

67

if (optimal -- 1) /* not optimal */

/* the entering variable is xj
/* determine the leaving variable

min - 1000000;
unbounded - 0;
testl - 0;
for (i-1; i<-rows; i++)

if ((a[i][enter] > 0) && (a[i][b vector] >- 0))

testl - 1;
unbounded - 1;
minimum-ratio - a[i][b_vector] / a[i][enter];
if (minimumratio < min)

leave -i;

min - minimumratio;

if (testl -0) err message - 1; /* test for unboundedness */
/* swap the basic variables
BASIS[leave].cj_value - cj[enter];
BASIS[leave].cj_index - enter;

if (unbounded - 0) optimal - 0;
/* pivot
if (optimal - 1)

/* divide the entire pivot row by the pivot element
pivot - a[leave][enter];
for (j - 1; j <- columns; j++)

a[leave][j] - a[leave][j] / pivot;

/* now update the remaining rows
for (i - 1; i<- rows; i++)

if ((i !- leave) && (a[i][enter] !- 0))

row-factor - a[i][enterl / a[leave][enter];
for (j - 1; j<- columns; j++)

a[i][j] - -I* row-factor * a[leave][j] + a[i][j];

,'/* optimal the pivot routine */

68

/* if (optimal - 1)

/* end while loop

if (optimal - 1) /* test for non feasibility */

for (i - 1; i<- rows; i++)

if (BASIS[iJ.cjindex > 157) err-message - 2;

if (errmessage !- 0) /* message(errmessage); */

clrscr);
exx - 5;
why - 2;

/* the print routine
if (errmessage -- 0)

clrscro;
totalsamples - 0;
for (i - 1; i<- 36; i++)

max - 0;
for (j - 1; j <- rows; j++)

if (BASIS[j].cj _index - i)

max - 1;

intpart - 0;
fract - modf(a[j][columns], &intpart);
if (fract > 0) intpart - intpart + 1;

int_part[i] - intpart;
totalsamples - total-samples + intpart;
if (exx > 60)

exx - 5;
why - why + 1;

gotoxy(exx, why);
cprintf(" %4.lf ", intpart);
exx - exx + 10;
j - rows;

69

if (max -- 0)

if (exx > 60)

exx - 5;
why - why + 1;

gotoxy(exx, why);
cprintf(" %4.lf ", 0.0);
exx - exx + 10;

/* end the print routine */
gotoxy(5, why + 3);

b - getch(;
b - b + 1;

I * i iI

REPORT DOCUMENTATION PAGE 1 0MB o007
I OMB No 0104 0188

ol,01, AOflrlnq butde iOf Tb,,, OI(e(lOf 3$,nl0rvAlin 'I .'sImated ' - "4. .,J ') ", 0r "n4t " r•e•f - ' Pudl"q th. ne - - 1 1-$ I, I �. -" I'll * .Iq I�a
)a ther, I .nInd Mi4l IA1flhlng Ihe ri atia needed, and (Omlpel I oI a no rele nq ip _n' 'P f . l' I ,rmA SIV'Y• 5*0,. .,,AI t% r a';j..?d ' this t fdA n ebjtir fle in. r0, *5.,e t)Y 1`S.

ii, ltioln)t i torml, lOP ,ltn udlng suggsltiOn% 90r tdutlo, ¶nbh Outh ,OCO !, 4,tsh~fllt{O*. p.d-aJ4 lie lC,,Ce l , ('HratF fqr r+ "A.r ,on ofwalt•nf inod ku r-'. Id 1,5 -tfer wnf
Oan. . irqh ,a+ Suite i204 Ardr-Iton JA f202.4302 , nd to theO. Of .3toof Ma-)-nl d uad+ Papetuck hPOu 'hn Pfle 1 104 0188) ýad',nql-r .'50J

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

April 1992 Final
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Optimal Sampling Plans for Items Representing
Two Population Groups

6. AUTHOR(S)
Randal S. Wendell

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
HQ Defense Logistics Agency REPORT NUMBER

Operations Research & Economic Analysis Office (DLA-LO
Cameron Station DLA-92-P20041
Alexandria, VA 22304-6100

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING I MONITORING
HQ Defense Logistics Agency AGENCY REPORT NUMBER

Laboratory Testing Team (DLA-QL)
Cameron Station
Alexandria, VA 22304-6100

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Public Release; Unlimited Distribution

13. ABSTRACT This paper examines a problem of determining optimal sampling

plans. The items to be sampled belong to two distinct populations which

are partitioned into sub-populations that require sampling plans. Three

mathematical programming models are investigated that -ninimize the total

sample size while also ensuring that the proportion of samples closely

resemble the actual population proportions. Both linear and non-linear

programming techniques are used to find an optimal sampling plan. Fi-

nally, comparisons are made from the solutions generated by "real" data

for all three models.
14. SUBJECT TERMS 15. NUMBER OF PAGES

Sampling, Laboratories, Testing 83
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION 9F ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)PM (,be'd bth ANSI Std I1 18

2qS. 102

